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Abstract. The birthdate of both generative linguistics and neural networks 
can be taken as 1957, the year of the publication of foundational work by 
both Noam Chomsky and Frank Rosenblatt. This paper traces the 
development of these two approaches to cognitive science, from their 
largely autonomous early development in their first thirty years, through 
their collision in the 1980s around the past tense debate (Rumelhart and 
McClelland 1986, Pinker and Prince 1988), and their integration in much 
subsequent work up to the present. Although this integration has produced 
a considerable body of results, the continued general gulf between these 
two lines of research is likely impeding progress in both: on learning in 
generative linguistics, and on the representation of language in neural 
modeling. The paper concludes with a brief argument that generative 
linguistics is unlikely to fulfill its promise of accounting for language 
learning if it continues to maintain its distance from neural and statistical 
approaches to learning. 

 
1. Introduction 
At the beginning of 1957, two men nearing their 29th birthdays published work that laid 
the foundation for two radically different approaches to cognitive science. One of these 
men, Noam Chomsky, continues to contribute sixty years later to the field that he 
founded, generative linguistics. The book he published in 1957, Syntactic Structures, has 
been ranked as the most influential work in cognitive science from the 20th century.1 The 
other one, Frank Rosenblatt, had by the late 1960s largely moved on from his research on 
perceptrons – now called neural networks – and died tragically young in 1971. On the 
same list of 100 influential works that ranked Syntactic Structures #1, there is nothing by 
Rosenblatt, though Perceptrons, the 1969 book by Minsky and Papert, is listed at #74. 

                                                 
* Acknowledgements: Thank you to Emily Bender, Sam Bowman, Matt Goldrick, Mark Liberman, Fred 
Mailhot, Joe Pater (père) and Language editors Andries Coetzee and Megan Crowhurst for very useful 
comments on an earlier version of this manuscript. For helpful discussion, thank you to Ricardo Bermúdez-
Otero, Noam Chomsky, Brian Dillon, Amanda Doucette, Robert Frank, Yoav Goldberg, Thomas Graf, 
Gaja Jarosz, Kyle Johnson, Samuel Jay Keyser, Andrew Lamont, Tal Linzen, George Nagy, Brendan 
O’Connor, Barbara Partee, Brandon Prickett, Alan Prince, Paul Smolensky, Emma Strubell, Aaron Traylor 
and Kristine Yu, and participants in the Workshop on Perceptrons and Syntactic Structures at 60. The 
workshop was funded by NSF grant BCS-1651142, and the preparation of this paper was supported by NSF 
grants BCS-1650957 and BCS-424077 to the University of Massachusetts Amherst. 

1 The list “The Top 100 most influential works in cognitive science from the 20th century” was compiled 
by the Center for Cognitive Sciences, University of Minnesota, in 2000 (Sanz 2008). I realize that picking 
any date, and any person, as the beginning of a tradition is somewhat arbitrary. Many of the ideas in 
Chomsky (1957) and Rosenblatt (1957) can be traced back much earlier (Pullum 2011; Schmidhuber 
2015). But Chomsky and Rosenblatt’s work was clearly particularly prominent and influential at the time, 
and sowed the seeds for much subsequent research in generative linguistics and neural networks.   
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Rosenblatt’s 1957 tech report, “The perceptron: a perceiving and recognizing 
automaton”, is very short and fairly programmatic, but the line of research that it began, 
much of it presented in his 1962 book, Principles of Neurodynamics, launched modern 
neural network modeling, including the multi-layer perceptrons used in deep learning . 

Chomsky and Rosenblatt’s approaches to cognitive science were radically 
different partly because they started at opposite ends of the problem of developing a 
computational theory of the human mind. Chomsky took a “high level” cognitive 
phenomenon – language, and in particular, syntax – and aimed to show that some 
reasonably powerful computational machinery was not up to the task of representing it, 
before going on to propose a more powerful theory that could. Rosenblatt took some very 
simple computational machinery – mathematical analogues of neural activation and 
synaptic connections – and aimed to show that it could represent “low level” cognitive 
processes involved in object perception and recognition, and that these representations 
could be learned algorithmically.  

Although Chomsky and Rosenblatt never met (Chomsky, e-mail 11/17/17), and 
neither one’s research seems to have had an impact on the other, both of them interacted 
with members of the intellectual community working on what was dubbed Artificial 
Intelligence (AI) in 1956 by John McCarthy and Marvin Minsky.2 Chomsky’s arguments 
about the representational complexity of language were made in the context of the 
models being explored by that community, in particular Finite State Automata, and 
related probabilistic Markov chains. George Miller gives the date of a presentation of that 
work at an AI conference, September 11, 1956, as the birthdate of cognitive science 
(Miller 2003: 142). Rosenblatt presented an early version of his perceptron research at 
MIT to an AI group in the fall of 1958 (Jack Cowan in Anderson & Rosenfeld 2000: 99–
100). Amongst the members of that audience was Minsky, Rosenblatt’s high school 
colleague, and the future first author of the critical appraisal of perceptrons mentioned 
above. Section 2 discusses how Chomsky and Rosenblatt’s proposals each diverged from 
“mainstream AI”. 

Generative linguistics and neural network modeling developed in apparently 
complete isolation from one another until they collided thirty years later, when Rumelhart 
and McClelland (1986) developed a perceptron-based, or connectionist, model of past 
tense formation in English, which was fiercely criticized from a linguistic perspective by 
Pinker and Prince (1988) and others. The broader debate between proponents of 
“algebraic” approaches to cognition, like generative linguistics, and “analogical” models, 
like connectionism, defined much of the landscape of cognitive science as it developed in 
the late 1980s and early 1990s. The second section of the paper discusses some of that 
debate, and argues that it produced important lessons for future research in both 
traditions, rather than ending in victory for one or the other side. I also survey some 
characteristics of each of the paradigms, and point out that although the characteristics 
can usefully differentiate them, their use in contrastive definitions can also lead to false 
dichotomies.  

                                                 
2 Jordan (2018) provides a critical discussion of current uses of the term AI, and also makes the interesting 
historical point that while current AI is dominated by neural and statistical approaches, McCarthy coined it 
to distinguish his preferred logic-based approach from Wiener’s earlier cybernetics, which was more 
statistical. 
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The final section of the paper surveys some of the subsequent research over the 
last thirty years that has integrated aspects of neural network modeling research and 
generative linguistics. One instance of such integration is Optimality Theory (OT; Prince 
and Smolensky 1993/2004), whose founders were on opposite sides of the debates of the 
1980s. I also discuss the recent resurgence of interest in neural networks in AI, and the 
emergence of renewed study in cognitive science and AI of their ability to represent 
linguistic generalizations, with or without explicitly coded linguistic representations.  

Based on this survey, I argue that progress on a core goal of generative linguistics, 
the development of a theory of learning, may well be aided by its integration with neural 
modeling. The principles and parameters framework (Chomsky 1980; see sec. 3.1 below) 
is built upon the premise that specifying a universal set of linguistic principles and 
parameters that delimit the range of possible linguistic variation helps to solve the logical 
problem of language acquisition. In the absence of a specified theory of learning, 
however, the argument that a rich Universal Grammar (UG) of this type – or its OT 
equivalent – is necessary to explain language acquisition is not completely solid. With the 
development of the rich theories of learning represented by modern neural networks, the 
learnability argument for a rich UG is particularly threatened. The question of how much 
and what kind of explicitly pre-specified linguistic structure is needed to explain 
language acquisition is in fact now receiving renewed attention in light of the learning 
capabilities of current neural networks. From a review of this work, it is hard to escape 
the conclusion that a successful theory of learning from realistic data will have a neural 
component. It is much less clear that a successful theory will need pre-specified UG 
parameters or constraints, though it seems likely that structured representations like those 
assumed in generative linguistics will play a role. All of this is discussed in more detail 
below.  

One reason for the general gulf between generative linguistics and neural network 
modeling may be that research in both traditions can be impenetrable to an outsider. My 
hope is that this paper will contribute to bridging that gulf not only by giving reasons to 
build the bridges, but also by providing a relatively accessible introduction to each 
tradition, inasmuch as this is possible in a single paper, rather than a pair of books. 
 
2. Foundation 
2.1 Neural networks 
There have been three waves of research on neural networks: in the late 1950s and early 
1960s, in the 1980s, and now in the 2010s (see Elman et al. 1996; and Marcus 2001 for 
introductions to neural nets for cognitive science). Frank Rosenblatt was the most 
prominent representative of the first wave. His research attracted the attention not only of 
other scientists, but also of the media,3 and perhaps partly because of the media attention, 
it became the focus of considerable controversy, culminating in the publication of 
Minsky and Papert’s (1969/1988) critique (see Olazaran 1993; 1996 for a thorough 
discussion of the (social) scientific history; and Nagy 1991 for a useful concise summary 
of research by Rosenblatt and his group).    

                                                 
3 The New York Times’ July 7, 1958 article about a perceptron demonstration starts with “The Navy 
revealed the embryo of an electronic computer that it expects will be able to walk, talk, see, write, 
reproduce itself and be conscious of its existence.”     
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Although neural network research often involves advanced mathematics, the 
fundamentals only require simple multiplication and addition. Rosenblatt’s (1957) 
perceptron uses analogues of neural structure developed in earlier work, in particular by 
McCulloch and Pitts (1943) and Hebb (1949). The activity of a neuron – also called a 
node or a unit – is represented as a numerical value, often as 1 or 0, on or off. This 
activity is passed along synaptic connections to other neurons. The connections are 
weighted: each one has a real valued number that is multiplied by the signal it receives 
from an input node. A given node becomes active when the sum of incoming weighted 
signals exceeds a designated threshold (this is a step-activation function, rather than for 
instance a sigmoidal activation function).  

The following diagram represents a small perceptron that performs object 
classification. There are two features “+Black” and “+Star”, each of which defines an 
Input node. In Rosenblatt 1957 et seq. these are the A units (for Associative), which 
would have themselves been activated through connections to S units (for Sensory). The 
weights on their connections to a single node (an Output, or Response unit) are shown 
beside the arrows representing the connections: 0.75 and 0.34 respectively. Given an 
activation threshold of 0.5, only black objects will activate the Output node. 

 

 
Figure 1: A simple perceptron for object classification 
 
The following table shows this network in action with the four objects instantiating each 
of the combinations of feature values. Each row shows the object under the Input column, 
followed by the Input node activations for each of the features. The weighted sum shows 
the total signal received by the Output node, and its resultant activation is shown in the 
final column. 
 
(1) A perceptron classifying the set of black objects 

Input 
+Black 

0.75 
+Star 
0.34 

Weighted 
Sum 

Activation 
(> 0.5 input) 

★ 1 1 1.09 1 
☆ 0 1 0.34 0 
♦ 1 0 0.75 1 

 0 0 0 0 
 
Different positive and negative weights will lead to different sets of objects activating the 
Output node. Famously, the sets characterized by an “exclusive or” logical relation 
(XOR) cannot be picked out by this type of network (see Minsky & Papert 1988 for a 
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proof). For instance, the objects in the middle two rows, the white star and the black 
diamond, cannot be the only ones to activate the Output node. These two objects form an 
XOR set: “+Black, or +Star, but not both”. One way to get this classification would be to 
include an Input node that is activated by the conjunction of the features [+Black] and 
[+Star]. The weight on the connection from that node could then be given a negative 
value sufficiently high that the black star’s activation falls beneath the 0.5 threshold, even 
while the other black object and the other star’s activation are above it. The classificatory 
power of this simple type of perceptron is dependent on content of the Input nodes: with 
arbitrarily complex combinations of features, it can perform arbitrarily complex 
classifications.  

In current parlance, this type of perceptron is called a single-layer neural network: 
there is a single set of adjustable weights connecting the Input layer of nodes to the 
Output layer (which was in our case just a single node).4 Besides increasing the size of 
the Input layer, another way to capture the XOR class is to introduce an additional 
“hidden” layer of neurons intermediate between the Input and Output, as shown in our 
next example network, illustrated in figure 2. 

 

 
Figure 2. A multi-layer perceptron that performs XOR classification. 
 
The weights on the connections to hidden layer Node 1 from the Input nodes are 0.26 and 
0.27. This results in a weighted sum of 0.53 for the black star, and activation only for that 
object given the 0.5 threshold. This thus implements logical AND. Because the weight 
from Node 1 to the Output node is negative, the black star receives a penalty, which 
implements the “but not both” clause of XOR.  

The first table below, in (2), shows the mapping from the Input to the hidden layer 
nodes. The weights to each of them are arrayed vertically, as are the resultant weighted 
sums and activations. The Node 1 values are bolded. As just discussed, the first node is 
active only when both features are present, while the second is active for objects that are 
either +Black or +Star (logical OR). 
 
  

                                                 
4 These are sometimes called two-layer networks (e.g. Pinker and Prince 1988, Marcus 2001), since there 
are two layers of nodes (Input and Output). This has the downside of making the term “multilayer” opaque. 
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(2) Multi-layer perceptron part 1: Input to hidden layer 
Input +Black 

0.26 
0.81 

+Star 
0.27 
0.60 

Weighted 
Sum 

Activation 
(> 0.5) 

★ 1 1 
0.53 
1.41 

1 
1 

☆ 0 1 
0.27 
0.60 

0 
1 

♦ 1 0 
0.26 
0.81 

0 
1 

 0 0 
0 
0 

0 
0 

 
The activation of the nodes in the hidden layer, shown in the rightmost column of the 
table in (2), is the input for the next table, which shows the mapping from the hidden 
layer to the Output. The activation values (2) are copied into the Node 1 and Node 2 
columns of (3). With the assigned weights, the Output node is activated when just Node 2 
is active (white star or black triangle), but not when both Node 1 and Node 2 are (the 
black star). 
 
(3) Multi-layer perceptron part 2: Hidden layer to Output 

Input Node 1 
–0.3 

Node 2 
0.6 

Weighted 
Sum 

Activation 
(>.0.5) 

★ 1 1 0.3 0 
☆ 0 1 0.6 1 
♦ 0 1 0.6 1 

 0 0 0 0 
 
This example shows that for a given set of input nodes, a multi-layer perceptron, that is, a 
network with a hidden layer, can have greater representational power than a single-layer 
one. Single-layer networks are limited to linearly separable patterns, while as the XOR 
example shows, multi-layer perceptrons can represent non-linearly separable patterns 
(separable in the two-dimensional space defined by the two features). For readers familiar 
with regression models, a useful analogy may be that the crucial node in the hidden layer 
is acting as an interaction term. 

The greater representational capacity of a multi-layer perceptron comes at a price: 
it is more difficult to train. Rosenblatt (1957; 1958) developed a learning procedure for 
single-layer perceptrons that is guaranteed to find a set of weights that yields the desired 
pattern of activation, if such a set of weights exists (Block 1962; Novikoff 1962; Minsky 
& Papert 1988). As discussed in section 3.1, this procedure does not work with a hidden 
layer; the development of relatively successful and efficient learning algorithms for 
multi-layer perceptrons was a primary factor in the sharp increases in research using 
neural networks in the 1980s and the 2010s.  

In their book originally published in 1969, but circulated before that, Minsky and 
Papert (1988) provide an in-depth study of the representational capacities of single-layer 
perceptrons, with a primary aim of showing the limits on what this type of perceptron can 
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represent. The appearance of Minsky and Papert’s book coincided with a shift of focus in 
the mid-to-late sixties from neural networks to other branches of the new discipline of AI, 
in particular, logic-based ones that manipulate symbolic representations with algebraic 
operations (see Nilsson 2010 for an excellent history of AI by a participant in this shift). 
It is hard to know to what degree it was the force of Minsky and Papert’s observations 
and arguments that led to this sea change, or whether it was that neural net research was 
largely running out of steam given the theoretical and technical barriers that existed at the 
time (see Olazaran 1993; 1996 for a particularly useful discussion). It is worth 
emphasizing that Rosenblatt and his group also worked with multi-layer networks, since 
this is often overlooked (Rosenblatt 1962; Block, Knight & Rosenblatt 1962; Block 1970; 
Nagy 1991; Pater 2017). 

Rosenblatt was trained as psychologist rather than as an engineer, and was 
committed to using perceptrons to model human psychological properties as realized in 
the brain, as the following excerpt from his 1962 book emphasizes (p. vi): 
 

A perceptron is first and foremost a brain model, not an invention for pattern 
recognition. As a brain model, its utility is in enabling us to determine the 
physical conditions for the emergence of various psychological properties. It is by 
no means a “complete” model, and we are fully aware of the simplifications that 
have been made from biological systems; but it is, at least, an analyzable model. 

 
Despite Rosenblatt’s characterization of perceptrons as brain models underlying 
cognition, research on neural networks did not have much, if any, impact on the emerging 
field of cognitive science. A 1978 report on cognitive science commissioned by the Sloan 
foundation to survey the field lists no such research in its bibliography (Keyser, Miller & 
Walker 1978). Shortly after that report was written, there would be a quite dramatic 
upsurge in neural network modeling, and at that point, it became a core part of cognitive 
science. These developments are covered in section 3. 
 
2.2. Foundations: generative linguistics  
Chomsky (1957: 13) sets up the analysis of a language as a classification problem: 
 

The fundamental aim in the linguistic analysis of a language L is to separate the 
grammatical sequences which are the sentences of L from the ungrammatical 
sequences which are not sentences of L and to study the structure of the 
grammatical sequences. 

 
Distinguishing a well-formed sentence from an ill-formed one differs from the object 
classification examples discussed in the last section in a number of ways. In particular, 
order in time matters for a sentence, whereas in the examples discussed above, there was 
no temporal or spatial relationship between the features. 5  A simple example of the 

                                                 
5 Goldberg (2012) makes use of this property of simple perceptrons to show that baboons’ knowledge of 
legal vs. illegal orthographically presented English words can be modeled without reference to word 
position or linear order, contrary to a claim in the original study (Grainger et al. 2012). Rosenblatt (1967) 
makes an interesting proposal about how to encode memory through time in a more complex perceptron, 
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importance of order in syntax is that The lion sleeps is a well-formed English sentence, 
but *Sleeps lion the is not. There are also dependencies between the form of items that 
occur at different points in time, as in subject-verb agreement: e.g. well-formed The lion 
sleeps and The lions sleep vs. ill-formed *The lion sleep and *The lions sleeps. 

One way of encoding the difference between these grammatical and 
ungrammatical sentences is in terms of allowable transitions between words: the followed 
by lion is permitted, but not the reverse, and lion can be followed by sleeps but not sleep. 
Chomsky (1957: 18) shows that “[a] familiar communication theoretic model for 
language” can encode these sorts of restrictions. This model, a finite state machine, 
specifies a set of states, along with allowable transitions between them. For example, we 
can specify that if a machine is in the lion state, it may move into the sleeps state, but not 
the sleep state.  

As the sentence below makes clear – as does the name of the field that he was 
laying the groundwork for – Chomsky (1957: 13) proposes to classify sentences as 
grammatical and ungrammatical in terms of whether or not they are generated by a 
grammar:  
 

The grammar of L will thus be a device that generates all of the grammatical 
sequences of L and none of the ungrammatical ones. 

 
As a generative device, a finite state grammar (FSG) can generate an infinite number of 
sentences using finite resources, a basic criterion for adequacy that Chomsky sets up for a 
theory of language. It can do this because it allows for loops. Figure 3 provides an FSG 
for an example from Chomsky 1957, which generates the man comes, the old man comes, 
the old man comes, the old, old, man comes and so on. The loop transition for old results 
in sentences of unbounded length, and thus a set of possible sentences of unbounded size.  
 

 
Figure 3. A Finite State Grammar generating an unbounded set of grammatical English 
sentences 
 

Chomsky (1957) cites Shannon and Weaver’s (1949) presentation of information 
theory as the source of the finite state formalism.6 While an FSG can represent some 

                                                                                                                                                 
one that has some similarities to the recurrent neural networks and convolutional networks used in 
contemporary deep learning (see section 4.2).  
6 Cherry (1957) provides a useful overview of the state of the art in the modeling of language at the time, 
with introductions to structural linguistics and information theory; this book was required reading for the 
first class of MIT PhD students in Linguistics (Barbara Partee, personal communication 2016). In the 
context of the present joint history of generative grammar and neural networks, it is worth mentioning that 
Feldman’s (1992: 73) encyclopedia entry on finite state machines locates their origin in McCulloch and 
Pitts’ (1943) study of the logical power of mathematical analogues of neurons, and also that Kleene’s 
(1956) introduction of the connection between finite state machines and regular expressions was in the 
context of “clarifying the results of McCulloch and Pitts” (Block 1970: 513-514). 
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ordering restrictions and dependencies amongst the words of a grammatical sentence, 
Chomsky (1957: 21-25) argues that it cannot represent the full complexity of English 
sentence structure. In particular, Chomsky points to the fact that English allows nested 
dependencies between particles like if … then and either … or: 
 
(4) IfA John eitherB ate orb drank thena he couldn’t sleep. 
 * IfA John eitherB ate thena drank orb he couldn’t sleep. 
    
The grammatical sentence exhibits a mirror structure: if we notate the dependent particle 
in lower case, the correct structure is ABba, and the ungrammatical sentence is instead 
ABab. An FSG cannot generate mirrored structures of unbounded size, just as it cannot 
represent AnBn (see the recent discussion in Jäger & Rogers 2012, as well as the critical 
commentary on Chomsky 1957 in Pullum 2012). Note that it’s not enough for the FSG to 
encode the fact that an if entails a later then: it must also keep track of the relative order 
in which it must encounter the dependent particles. Interestingly, one of the challenges 
for perceptrons that Minsky and Papert (1988) discuss is the similar recognition of 
symmetry (pp. 117, 252-254). I should note that “mirror structure” is not the conventional 
term for the linguistic phenomenon, rather, it is usually discussed as “center embedding”, 
and a more typical example would be center embedded relative clauses, such The girl 
that hit the balls that flew over the fence is cheering.  

The discussion of the limitations of FSGs in Chomsky (1957: sec. 3) comes after 
a discussion of the inadequacy of “statistical approximation to English” as a proxy for the 
grammatical / ungrammatical distinction (sec. 2). This takes as its starting point the 
famous pair of sentences in (5). 
 
(5) Colorless green ideas sleep furiously. 
 Furiously ideas sleep green colorless.  
 
Chomsky (1957: 16) claims that since the two sentences, and their subparts, would 
equally be zero frequency in a corpus, they would be “equally ‘remote’ from English…in 
any statistical model of English”. Pereira (2000) has shown that this is incorrect: these 
sentences are in fact distinguished by a bigram model over word categories (note for 
example that the second sentence starts with a less frequent adverb-noun sequence, 
compared with the adjective-noun sequence in the first). Nonetheless, Chomsky (1957: 
24) may still be right that it would be a “dead end” to try to reduce sentence 
wellformedness to n-gram probabilities over sequences, or to the more complex 
distributions over sequences that can be represented by a probabilistic Markov chain 
instantiation of an FSG, regardless of whether those sequences are of words or categories. 

So what characteristics must an adequate grammatical model for English have? 
One obvious characteristic of most grammatical models that goes beyond mere sequential 
restrictions is the ability to represent the hierarchical phrase structure of a sentence. 
Chomsky (1957: 30) shows that a phrase structure grammar is able to generate the nested 
dependencies discussed above, and is thus more powerful than an FSG. Chomsky’s 
proposal goes further than phrase structure in also making use of transformations, which 
take as input a string with phrase structure and produce as output another string with a 
new structure (p. 44). Chomsky argues that by deriving passive sentences, negation, and 
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questions through transformations on a base “kernel” phrase structure, considerable 
simplifications in the form of the grammar can be obtained.7   

The relatively deep derivations entailed by a transformational grammar were seen 
as a liability by some, and alternative frameworks emerged that eschewed them (e.g. 
GPSG Gazdar et al. 1985; HPSG Pollard & Sag 1994; and LFG Bresnan 2001). Deep 
derivations have generally been retained in the frameworks that Chomsky himself has 
subsequently developed, including current minimalism, although the objects being 
manipulated by the derivations have changed (for a useful recent comparison of 
minimalism with two non-derivational alternatives, LFG and HPSG, see Bond et al. 
2016). 

The postulation of these two kinds of abstract structure – hierarchical constituents, 
and underlying forms that are derivationally transformed into the surface structure – are 
also characteristic of generative analyses of aspects of language other than syntax. Even 
though phonological restrictions seem to be representable at the segmental string level by 
FSGs (Heinz & Idsardi 2011; Heinz & Idsardi 2013), hierarchical representations are 
standardly viewed as necessary for an adequate characterization of the phonologies of the 
world’s languages (Selkirk 1981; Yu 2017). A well-known example of derivational 
transformation in phonology is the postulation of an abstract underlying /ai/ in words like 
title and writer in Canadian English, in which they are pronounced with a ‘raised’ 
diphthong [ʌi] that contrasts with surface [ai] in words like bridle and rider. The two 
surface phones can be generated from a single underlying phoneme by assuming that as 
in the spelling, title and writer have an underlying /t/, which conditions raising before it 
becomes the surface flap (Harris 1951; Chomsky 1964). As in syntax, the derivational 
depth of many analyses in generative phonology has been controversial (see Anderson 
1985 for an overview of this controversy).  

In phonology at least, one reason that deep derivations are controversial is that 
they are suspected to pose difficulties for learning (see Dresher 1981 for discussion). 
Here we can draw a potentially useful connection to the hidden layers of neural nets, 
discussed in the last section. The perceptron analysis of XOR pattern classification made 
use of a hidden layer node that abstractly specified the conjunction over features: it was 
not present in the “surface” Input nodes, which were activated by single features. Like the 
derivations and hierarchical structure of a generative linguistic analysis, the weights that 
lead to the conjunctive activation of the hidden layer have to be inferred by a learner. 
Tesar and Smolensky (2000) call linguistic structure that is not apparent to the learner 
“hidden”, and discuss the learning challenges that it poses (see further 4.1 below). 
Drawing a connection between hidden linguistic structure and hidden layers of neural 
nets is potentially useful in two ways, on which I’ll expand below. The first is that 
techniques for learning with hidden layers are potentially useful in learning with 
explicitly encoded hidden linguistic structure. The second is that hidden layers may be 
used to learn representations that take the place of explicitly encoded hidden structures. 
As a historical note, we can also draw a parallel between skepticism about hidden 
linguistic structure based on learning concerns, and Minsky and Papert’s (1988) 
skepticism about the tractability of learning with hidden layers.  

                                                 
7 Chomsky’s simplicity comparisons are relatively informal. Stabler (2013) presents a related more formal 
comparison of grammatical succinctness across derivational and non-derivational frameworks. (Thanks to 
Thomas Graf and Fred Mailhot for discussion).  
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It is this postulation of abstract structure, specific to language, that differentiates 
work in generative grammar from what one might call mainstream AI, which tends to 
postulate relatively concrete representations and domain-general cognitive mechanisms. 
As we will see in the discussion of connectionism in the sections that follow, generative 
linguistics is however similar to mainstream AI of the pre-connectionist era in its use of 
algebraic operations over symbolic representations. 

It is perhaps worth reminding ourselves that even the relatively concrete features 
of a surface linguistic representation, as well as the features used in the neural net 
discussed in the last section, are themselves abstractions from raw perceptual experience. 
At a minimum, a learner must acquire a mapping from a more basic level of 
representation to these features (insofar as it is not prewired), and at least some of these 
features probably need to be induced. Given the usefulness of neural networks in vision 
and speech recognition applications in AI, they may well be useful in addressing this part 
of the learning problem in cognitive science. I will have no more to say about it here 
though, as my focus is on the “higher level” learning problems that are the focus of 
generative linguistics. 
 
3. Friction 
3.1 Innatism and emergentism 
One of the main themes of this section is a caution against the false dichotomies that can 
be created by contrastively labeling neural network and generative linguistic research, so 
it is with some trepidation that I start this subsection with a heading that contains two of 
those very labels. However, to finish setting the stage for the encounter between the 
generative and neural network traditions that occurred in the 1980s, it is important to 
emphasize how central learning had become in generative linguistics, and how 
dramatically the approaches to learning differed in the two traditions.   

In Chomsky 1957, there is no real mention of learning, though his future 
emphasis on learnability considerations is foreshadowed in two ways. The first is in the 
aforementioned discussion of the inadequacies of (probabilistic) sequential models of 
language, which can be trained by relatively simple learning algorithms. The second is in 
a section on the “Goals of Linguistic Theory”, in which he rejects the structuralist 
insistence on discovery procedures – algorithms for proceeding from a corpus to an 
analysis – in favor of a weaker requirement that there be an evaluation procedure, a 
method for choosing amongst hypothesized grammars. In Chomsky 1957, the evaluation 
procedure is for the linguist’s task of choosing amongst analyses and theories, but it 
would later be taken to be part of the acquisition process (Chomsky 1965; Chomsky & 
Halle 1968).  

Shortly after the publication of Syntactic Structures, learning did of course 
become an explicit focus of Chomsky’s attention, in his 1959 review of Skinner’s (1957) 
Verbal Behavior, which contains the following passage (Chomsky 1959: sec. V):   
 

It is often argued that experience, rather than innate capacity to handle 
information in certain specific ways, must be the factor of overwhelming 
dominance in determining the specific character of language acquisition, since a 
child speaks the language of the group in which he lives. But this is a superficial 
argument. As long as we are speculating, we may consider the possibility that the 
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brain has evolved to the point where, given an input of observed Chinese 
sentences, it produces (by an induction of apparently fantastic complexity and 
suddenness) the rules of Chinese grammar, and given an input of observed 
English sentences, it produces (by, perhaps, exactly the same process of 
induction) the rules of English grammar; or that given an observed application of 
a term to certain instances, it automatically predicts the extension to a class of 
complexly related instances. If clearly recognized as such, this speculation is 
neither unreasonable nor fantastic; nor, for that matter, is it beyond the bounds of 
possible study. There is of course no known neural structure capable of 
performing this task in the specific ways that observation of the resulting behavior 
might lead us to postulate; but for that matter, the structures capable of accounting 
for even the simplest kinds of learning have similarly defied detection. 

 
From this initial speculation about rapid induction, the generative program eventually 
became one of mapping out the hypothesis space that a learner was claimed to 
deductively navigate in acquiring a language – of characterizing Universal Grammar 
(UG).8 In principles and parameters theory (Chomsky 1980: 3–4), the hypothesis space is 
characterized by a set of universal principles, alongside language-specific parameters that 
are “fixed by experience”. The postulation of a relatively rich innate endowment is 
justified in learnability terms: “UG must be sufficiently constrained and restricted in the 
options it permits so as to account for the fact that each of these grammars develops on 
the basis of quite limited experience”. Chomsky’s claims about the “poverty of the 
stimulus” have engendered considerable discussion (see e.g. Pullum & Scholtz 2002 and 
the replies in the same volume, and the comments in Pereira 2000: 1243-1245 from an 
information theoretic perspective, as well as the recent connectionist proposals in Fitz 
and Chang 2017, discussed further in 4.2 below). One fundamental issue, to which I will 
return in the conclusion, is that Chomsky’s claim about learnability in the just-cited 
passage was made in the absence of a specified theory of learning. 

While Chomsky’s argument for a restrictive theory of UG was made on the basis 
of learning considerations, a restrictive UG-based theory of language typology has been 
taken as an independent goal in much subsequent generative research in both syntax and 
phonology. Because of this focus on restrictiveness, generative critiques of connectionist 
models would thus not only point out their failures to acquire linguistic systems, but also 
their ability to learn patterns that fall outside those attested in human language (see 3.2 
below).  

Principles and parameters theory led to a large body of UG-based typological 
research, as well as considerable research on first and second language acquisition, and to 
some extent theories of learning addressing the question of how parameters are set (see 
e.g. papers in Roeper & Williams 1987; Lidz, Snyder & Pater 2016). The parameter-
setting problem is non-trivial, and I will return to it in section 4.1 in the context of 
alternative models of linguistic typology. 

At about the same time as principles and parameters theory emerged, neural 
network research was making large strides in the development of algorithms for the 

                                                 
8 The extent to which the hypothesis space is specified varies across proposals about UG. Principles and 
parameters theory, and Optimality Theory after it, have relatively richly specified UGs, even in comparison 
to many other generative approaches. See sections 4 and 5 below for related discussion. 
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navigation of the representational space provided by multi-layer perceptrons. 
Rosenblatt’s (1957, 1958) learning algorithm for single-layer perceptrons is an error 
correction procedure. Given an input, the network is used to predict an output. If the 
network’s output fails to match the correct output, yielding an error, the weights are 
changed slightly in the direction of generating the correct activation pattern. The 
activation pattern of a hidden layer is not given as part of the training data, so it is not 
straightforward to update its input weights. Rosenblatt could see that a solution would be 
to propagate the error signal back through the hidden layer (and even used the term 
backpropagation; Rosenblatt 1962: 297-298, cited in Olazaran 1993: 391) but neither he 
nor any of his contemporaries could find an effective way of doing so. According to 
Terrance Sejnowski (interview cited in Olazaran 1993: 398), the crucial step in 
developing the algorithm known as backpropagation (Werbos 1982; Rumelhart, Hinton 
& Williams 1986; LeCun 1988) was to replace the step activation function, which yields 
discrete activation levels, with a continuous sigmoidal function. This allowed for the 
calculation of a gradient, which determines the direction of the weight updates. Although 
back propagation is not guaranteed to find an optimal set of weights, it is (perhaps 
surprisingly) effective, and a variety of methods exist for increasing the likelihood that it 
will find a global, rather than a local, minimum of error.  

Because of its focus on learned representations, neural network research is a 
largely emergentist tradition, and the connectionist linguistic literature often contrasts 
itself with Chomskyan innatism (Elman et al. 1996; Bates et al. 1998). It is important to 
emphasize, though, as the just-cited authors do, that a network needs a specified structure 
for it to represent the effects of learning, just as innate parameters need a specification of 
how learning works if they are to respond to experience.  
 
3.2 The past tense debate 
Even though it was the development of backpropagation for learning with hidden layers 
that launched the revitalization of neural network research in the 1980s, the model that 
became the focus of the debate between generativists and connectionists was a single 
layer network, trained by a version of Rosenblatt’s (1957) perceptron update rule. The 
Input to this network is a phonological representation of the uninflected form of an 
English verb, and its Output is the predicted phonological form of its past tense. 
Rumelhart and McClelland (1986:217) present this network as illustrating an alternative 
to the views that “the rules of language are stored in explicit form as propositions, and are 
used by language production, comprehension and judgment mechanisms” and that in 
learning, “[h]ypotheses are rejected and replaced as they prove inadequate for the 
utterances the learner hears”, using a learning mechanism that has “innate knowledge of 
the possible range of human languages”. That is, they set up their past tense simulation as 
illustrating an alternative to the generative approach to language and its learning (for 
which they cite Pinker 1984 as a state-of-the-art example). 

Rumelhart and McClelland’s model of past tense formation represents an 
alternative to the generative view in the sense that there is neither an explicit rule that 
adds a past tense morpheme to an uninflected stem, nor are there explicit rules for 
determining the phonological shape of that morpheme. In fact, there is no morphology at 
all in the model besides the fact that the Input is itself an uninflected stem; there is no 
morphological decomposition in the Output past tense or in any intermediate form. Both 
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the addition of the phonologically appropriate form of -ed in regular past tense formation, 
as well as the various forms of irregular past tense such as vowel change (sing, sang), no 
change (hit, hit), and suppletion (go, went) are all handled by a single network of 
weighted connections between the atoms of the phonological representation of the 
uninflected form and those of the inflected one. Learning consists of weight adjustments 
in response to errors in the prediction of the past tense form. This may be seen as a form 
of hypothesis testing in the sense that the current values of the weights represent the 
network’s current hypothesis, which is modified by a weight update, but it is different 
from most generative learning algorithms in that the hypotheses are over a continuous 
rather than a discrete space, and the changes in output are typically gradual, rather than 
abrupt (see Elman et al. 1996: chap. 4 on nonlinearities in learning curves). Rumelhart 
and McClelland (1986) show that these gradual weight adjustments allow them to model 
the trajectory of the acquisition of the past tense, producing the U-shaped development 
that results from initial accurate production of irregulars, followed by over-regularization 
(goed, hitted), and then back to the correct target form.  

One of the targets of Pinker and Prince’s (1988) critique of Rumelhart and 
McClelland 1986 is the nature of the phonological representations used in the model. 
Like the Input layer of the object classification networks in section 2 above, there is no 
temporal order in the Input nodes of the past tense model (see Elman 1990 for a 
discussion of the difficulties with a temporally ordered Input layer). To represent 
phonological contexts, a single node encodes features of both the preceding and 
following phone, as well as the central phone – a triphone representation called a 
Wickelfeature (after Wickelgren 1969). This is clearly not a general solution to the 
problem of encoding temporal order, and as Pinker and Prince (1988) discuss at length, it 
runs into number of problems. Amongst these is the fact that it can represent string 
reversals (mad → dam) as easily as it can represent an identity map, yet no language uses 
string reversals as a phonological process. Subsequent connectionist models of the past 
tense, as well as other types of morphophonology (see Alderete & Tupper 2018 for an 
overview), tend to adopt one of two general approaches. One is to notate features for 
where they appear in a word, as in the templates proposed by Plunkett and Marchman 
(1993). Another is to make use of a Recurrent Neural Network (Elman 1990), in which 
the phonological string is processed one segment at a time (see further sec. 4.2). 
Touretzky and Wheeler (1991) directly address the overgeneration problem noted by 
Pinker and Prince (1988) by developing a connectionist model that performs mappings 
from one string to another, and which cannot represent reversals (see also Gasser & Lee 
1990 on the difficulty of reversals in Simple Recurrent Nets). 

Pinker and Prince (1988) question several other aspects of the representation of 
past tense formation in the Rumelhart and McClelland model. The critique that most 
defined the course of future research was the claim that the irregular and regular past are 
the product of separate systems, rather than being produced by a single cognitive module. 
In Pinker and Prince’s view (p. 122-123), regularities in “irregular” past tense formation, 
such as the association of particular expressions of the past tense with particular final 
consonants (e.g. [ei] to [ʊ] with a final [k] as in take/took, shake/shook, no change with 
final [t] or [d] as in hit, bid), are “family resemblances” that are the product of the 
memory system, which may well be formalized in connectionist terms. That is, the 
irregular past tenses are lexically stored, and anything that looks like a rule-governed 
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regularity is in fact a product of how the words are stored. The regular pattern, on the 
other hand, is the product of a morphosyntactic rule, or rules, that add the -ed morpheme, 
and phonological rules of voicing assimilation and vowel epenthesis that yield the 
contextually appropriate surface forms. For overviews of the subsequent research from 
what we might call the Pinkerian perspective, see Pinker (1999), Pinker and Ullman 
(2002) and Marcus (2001: 68 ff.), and from the connectionist perspective, see McClelland 
and Patterson (2002) and Seidenberg and Plaut (2014). Debates between proponents of 
one and two systems models are pervasive in cognitive science; for a recent trenchant 
critique of two systems models of category learning, see Newell et al. (2011). 

Since I have been presenting Pinker and Prince’s critique as coming from a 
generative perspective, I should be clear that a two systems approach is not inherent to a 
generative analysis of the past tense, and is probably not even standard in that tradition. 
Chomsky (1957: fn. 8) in fact sketches a rule-based analysis of cases of vowel change 
like take/took, which is developed in Chomsky and Halle (1968: p. 11) and Halle and 
Mohanan (1985: 104ff.), and Albright and Hayes (2003) present a quite different single 
system rule-based analysis. Although many phonologists might in fact believe that 
lexically irregular morpho-phonology is better handled by a system of lexical analogy 
than by a rule-based system (see Albright and Hayes for a critique of that view), it is rare 
to see that view developed into analyses, presumably because most phonologists do not 
have a formal system at hand for constructing the lexical part of the analysis. A notable 
exception is Bybee’s model of Natural Generative Phonology, which draws a strict 
distinction between productive phonological rules and semi-productive morpho-
phonology; Bybee (1988) embraces connectionism as a means of formalizing her lexical 
networks (see further Bybee & McClelland 2005).9 

The debate between connectionists and proponents of rule-based models of 
cognition often turns on a definition of what it means for a model to be rule-based, or 
connectionist. Lachter and Bever’s (1988) critique of Rumelhart and McClelland (1986), 
and Marcus’ (2001) critique of its connectionist successors, challenge the extent to which 
the models can truly be claimed to be alternatives to rule-based models. Although 
Rumelhart and McClelland’s model of the past tense clearly lacks the rules of a standard 
analysis of the regular past tense, it adopts relatively standard phonological features, and 
Lachter and Bever (p. 211) argue that choice, as well as the particular configurations of 
features for the nodes, essentially engineers a rule-based solution into the model. Marcus 
(p.83) argues that: 
 

the closer the past tense models come to recapitulating the architecture of the 
symbolic models–by incorporating the capacity to instantiate variables with 
instances and to manipulate…the instances of those variables–the better they 
perform. 

 

                                                 
9 As Bermúdez-Otero (2016) points out, another generative approach that seems compatible with the two-
systems view is Jackendoff’s (1975) work on Lexical Redundancy Rules, and there are also relations to 
ideas in Lexical Phonology (Kiparsky 1982; see Kaisse & Shaw 1985; Kenstowicz 1994 for overviews). 
See also Liberman (2004) on the divergence between generative practice and Pinker’s two systems 
approach, and Embick and Marantz (2005) on some of the issues in relating generative theories to 
experimental data on the past tense. 
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The absence of variables in the Rumelhart and McClelland (1986) model is another of the 
primary targets of Pinker and Prince’s (1988) critique (see p. 176), and it is the presence 
of variables that Marcus (2001) takes as part of the definition of a “symbolic” model, and 
key to its success – the other part is the ability to manipulate those symbols with 
algebraic rules (see Smolensky 1988 on the subsymbolic nature of connectionism; and 
see Hummel 2010 for a recent discussion of the properties of symbolic systems).  

Some of the back-and-forth in the past tense debate can be tiring precisely 
because it consists of one side accusing the other of not being true to its principles in 
incorporating aspects of the first sides’ theory. But this aspect of the debate is ultimately 
instructive in that it shows that the space between connectionist and generative models of 
language is more fluid than the rhetoric might sometimes suggest. Some points related to 
this fluidity have already been made above: (1) there is nothing about a connectionist 
model that prohibits the use of symbols, including variables, and other representations 
developed in linguistic traditions (see e.g. Doumas, Puebla & Martin 2017; Palangi et al. 
2017 for recent work on learning symbolic representations in neural nets); (2) a 
generative rule-based model can, and often does, have the very specific rules needed to 
model irregular morpho-phonology; (3) a generative model is not fully innatist in that 
parameters need to be set by experience; (4) a connectionist model is not fully 
emergentist in that much of its structure must be specified. None of this is controversial, 
but it might not be apparent when each of the traditions is contrastively labeled with these 
characteristics. 

Before moving on to discussion of contemporary models that illustrate the 
fruitfulness of integration across the connectionist-generativist divide, it is worth saying a 
few words about another model characteristic that might be taken as definitional of each 
of generativism and connectionism. Rumelhart and McClelland’s (1986) past tense model 
uses a probabilistic interpretation of a sigmoid activation function, and thus produces 
probabilities over different outputs for a given input. Models of generative grammar, 
from Chomsky (1957) onwards, typically use deterministic rules that produce a single 
output for a given input.10 Neither of these choices are fixed however: the examples of 
perceptron networks in section 2 are deterministic, and rules can be given a probability of 
application (see e.g. the probabilistic formulation of Labov’s variable rules in Cedergren 
& Sankoff 1974; and the probabilistic formulation of minimalist syntax in Hunter & Dyer 
2013; see Lau, Clark & Lappin 2017 for recent discussion of probabilistic grammars and 
sentence acceptability judgments). The past tense debate also provides a reason to 
formalize a rule-based model probabilistically: as children acquire the regular -ed past 
tense, its probability of use seems to increase gradually (McClelland & Patterson 2002: 
467–468). 11  Pinker and Prince (1988: 164) in fact sketch a rule-based approach to 
acquisition that incorporates “competition among multiple regularities of graded 
strength”, which is elaborated on with explicitly stochastic rules in Albright and Hayes 
(2003).  

                                                 
10  See the interview with Chomsky in Katz (2012) for an expression of continued skepticism about 
probabilistic approaches (to AI), and Norvig (n.d.) for an extended reply to earlier related comments. 
11 A two systems theory might not in fact need probabilistic rules to capture these data, provided it had 
probabilistic lexical access that competed with rule application. As far as I know, there are no implemented 
versions of such an approach that compete with the connectionist accounts (see Zuraw 2010 for a related 
proposal).  
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In my view, rather than yielding a single victor, the past tense debate provided 
important lessons for the further development of both the generativist and connectionist 
traditions, as well as their hybrid offspring. The connectionist models of the past tense, 
including that of Rumelhart and McClelland, show that simple and explicit models of 
learning can be combined to good effect with the representational structures developed in 
linguistics: learning need not be over unstructured strings of words, as in the models 
criticized by Chomsky (1957). The generativist critiques bring to the fore the structural 
complexity of language, which is not well captured by Rumelhart and McClelland’s 
model or its immediate successors. Perhaps more controversially, they also seem to 
indicate the fruitfulness of incorporating richer combinatorial structure in the 
representations manipulated by connectionists’ models.   
 
4. Fusion 
Despite – or perhaps because of – the debates between proponents of connectionist and 
generative approaches to the study of language, at the end of the 1980s and beginning of 
the 1990s some linguists began developing connectionist models of language, which 
often incorporated representational assumptions from generative linguistics (e.g. Lakoff 
1988; Hare, Corina & Cottrell 1989; Legendre, Miyata & Smolensky 1990; Goldsmith 
1993; Lakoff 1993; Wheeler & Touretzky 1993; Gupta & Touretzky 1994). Interest 
developed from the other “side” as well: some of the just cited papers were collaborations 
with connectionists (Smolensky, Touretzky), and connectionist research on language 
often began to make use of explicitly hybrid models (see e.g. many of the contributions to 
Sharkey 1992).12 In the following sections, I cover a small part of the work13 over the last 
30 years that synthesizes aspects of connectionism and generative linguistics: section 4.1 
discusses an approach to generative grammar resulting from the importation of constraint 
interaction, a relatively high-level abstraction from connectionism, while section 4.2 goes 
on to discuss the ongoing controversy over the representation of syntactic structure in 
connectionist networks.  
   
4.1 Constraint interaction in generative grammar 
The title of this subsection is the subtitle of Prince and Smolensky’s 2004 book originally 
circulated in 1993 that introduced Optimality Theory (OT), a particularly fruitful 
connectionist-generativist fusion (see the now more than 1300 contributions to the 
Rutgers Optimality Archive – http://roa.rutgers.edu).  

OT is a descendent of Chomsky’s (1980) principles and parameters framework in 
that it similarly posits a rich UG, with the goal of delimiting the space of possible 
languages. Instead of parameters whose values are fixed by a learner, OT has constraints 
whose ranking must be determined. A close relative of OT is Harmonic Grammar (HG; 

                                                 
12 Rosenblatt was himself an advocate of a hybrid approach to cognition, in the sense that he saw some 
cognitive processes as outside of the domain of perceptron theory (Rosenblatt 1964). 
13 One particularly notable omission is research in the Gradient Symbol Systems framework (Smolensky, 
Goldrick & Mathis 2014), which would require another paper to cover. I have also in general abstracted 
from the question of whether gradient well-formedness provides arguments for connectionist approaches 
(see originally Legendre, Miyata & Smolensky 1990 on the modeling of gradient syntactic judgments with 
weighted constraints). There is also a current resurgence in the use of neural networks to model 
morphology (see especially Malouf 2017).  
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Legendre, Miyata & Smolensky 1990; Smolensky & Legendre 2006), which numerically 
weights, rather than ranks, its constraints. I will illustrate the OT/HG formalization of 
generative grammar using HG’s weighted constraints, since this represents a more direct 
fusion with connectionism (see Pater 2016a for discussion of HG/OT similarities and 
differences). 

Prince and Smolensky (2004; ch. 4) provide an extended argument for constraint 
interaction in the domain of word stress, comparing the Extrametricality parameter 
(Hayes 1980) to a violable Nonfinality constraint. An Extrametricality parameter places 
word-final syllables outside of the domain of word stress, while a Nonfinality constraint 
penalizes stressed word-final syllables, but can be violated under the compulsion of other 
constraints. To see how violable constraints can produce different results from inviolable 
rules or constraints, consider the interaction of Nonfinality with a Weight-to-Stress 
constraint that requires heavy syllables to be stressed. These constraints come into 
conflict when a heavy syllable is in final position. The tableau in (6) shows a bisyllable 
with a heavy final syllable (one with a coda nasal) and a light initial one (a CV syllable), 
and two candidate stress placements. The first candidate, batán, has stress on the final 
syllable, and thus violates Nonfinality, indicated with a negative integer in its column. 
The second candidate has stress on the light syllable, so the unstressed heavy violates 
Weight-to-Stress. The constraints’ weights are provided underneath their names: Weight-
to-Stress has a higher weight than Nonfinality (5 vs. 2). The column labeled Harmony 
gives the weighted sum of constraint violations. In a deterministic version of HG, the 
candidate with highest Harmony, in this case batán, is picked as the Output – the optimal 
candidate.  
 
(6) A Harmonic Grammar tableau 

Input: batan Weight-to-Stress 
5 

Nonfinality 
2 

Harmony 

Output: batán  –1 –2 
bátan –1  –5 

 
The notion of constraint interaction – of one constraint overriding another – illustrated in 
this tableau can be abstractly seen in the connectionist network for XOR in section 2.1, in 
which the constraint against black stars activating the output neuron (negative weight on 
the relevant connection) outweighs the constraint that black objects and stars should 
activate it (positive weights on the relevant connection). 

So far, we could equally analyze this situation with an Extrametricality parameter 
that is turned off, so that the final syllable is eligible to be stressed, and a Weight-to-
Stress parameter that is turned on, so that the heavy syllable is picked over the light one. 
Consider, however, the following tableau, which shows a form in which there is no heavy 
syllable, and in which Nonfinality can be satisfied without violating Weight-to-Stress. 
Nonfinality prefers the candidate with stress on the initial syllable over stress on the final 
syllable. If Nonfinality were replaced by an inactive Extrametricality parameter, it could 
not be used to account for the lack of final stress in this instance. Cases like this are 
referred to in the OT literature as the emergence of the unmarked, or more broadly, as 
non-uniform constraint application.  
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(7) Illustration of “emergence of the unmarked” 
Input: bata Weight-to-Stress 

5 
Nonfinality 

2 
Harmony 

batá  –1 –2 
Output: báta   0 

 
The switch from parameters to violable constraints has consequences for both the 

study of language typology, and of learning. 14  For language typology, it becomes 
possible to maintain relatively general formulations of constraints while still accounting 
for details of individual languages. In parametric theory, an analyst’s observation of 
surface violations of constraints in a language in which they are generally active leads to 
a range of responses, including simply changing a general constraint into a set of more 
specific ones that can remain inviolable – this tactic is the main target of Prince and 
Smolensky’s (2004) attack on Extrametricality (see also Coetzee 2008: sec. 2.1 on the 
violability of the OCP). In a review of Halle and Vergnaud’s (1987) parametric metrical 
theory of word stress, Dresher (1990) discusses some of its additional “extraparametric 
devices”, and concludes that their use draws into question Halle and Vergnaud’s claims 
that their theory is more typologically restrictive than its competitors. Dresher (p. 184) is 
in fact pessimistic that the relative restrictiveness of the theories can be determined: “At a 
time when all versions of metrical theory command such arsenals, comparisons of 
expressive power are likely to remain inconclusive.” 

The situation changed dramatically with the introduction of violable constraints 
(see e.g. Kager 2005 for an extended comparison of two OT theories of word stress). The 
greater success in constructing and comparing theories of typology was partly due to the 
success of the associated learning algorithms. Both OT and HG have provably 
convergent learning algorithms that will find a constraint ranking, or weighting, for any 
set of candidate outputs that can be made jointly optimal (see Tesar & Smolensky 2000 
on OT; Potts et al. 2010; Boersma & Pater 2016 on HG). Given the candidate sets and 
their violation profiles, we can thus determine which potential languages (sets of optima) 
are in fact generated by the constraint set. This learnability approach to typology 
calculation was pioneered by Hayes et al. (2013) for OT (see also Prince, Tesar & 
Merchant 2015), and has been extended to HG and serial variants of OT and HG by 
Staubs et al. (2010). 

Studies of typology in OT and HG typically make use of deterministic variants of 
the theories, in which within-language variation is abstracted away from. Probabilistic 
variants of OT and HG have also been developed (see the survey in Coetzee & Pater 
2011), and alongside them learning algorithms. Maximum Entropy Grammar (MaxEnt; 
Goldwater & Johnson 2003), a probabilistic variant of HG, has the distinction of having 
associated provably convergent learning algorithms, due to its grounding in 

                                                 
14 I am abstracting from another dimension on which OT and parameter-based theories differ. Prior to OT, 
constraints in generative grammar interacted with rules, rather than with one another (see McCarthy 2002; 
Prince & Smolensky 2004; McCarthy, Pater & Pruitt 2016 for comparison). The story of this particular 
marriage between connectionism and generative linguistics is largely about the quest for improved 
constraint-based theories of linguistics – see e.g. the comments by Alan Prince in Pater (2016b) – though it 
is also about finding a neural grounding for symbolic systems (Smolensky & Legendre 2006). Much of the 
controversy around OT concerns its abandonment of serial rule ordering (Vaux & Nevins 2008).   
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mathematically well-understood models from other domains, including neural networks 
(Smolensky 1986; Johnson 2013a). In MaxEnt, the probability of an output is 
proportional to the exponential of its Harmony. For example, with the weights in Tableau 
(6), batán would have probability 0.95, rather than being deterministically picked as 
optimal, since exp(–2) / (exp(–2) + exp(–5)) = 0.95.  

As well as modeling variation in final state grammars, probabilistic OT and HG 
grammars have also been used to model the variation in grammars in the course of 
acquisition (see the overview in Jarosz 2010; see also Moreton, Pater & Pertsova 2015). 
One class of gradual learning algorithm used in this work includes an application of 
Rosenblatt’s Perceptron convergence procedure (Pater 2008; Boersma & Pater 2016); this 
class of inter-related algorithms also includes Boersma’s (1997) widely used learner for 
Stochastic OT (see also Boersma & Hayes 2001) and (Stochastic) Gradient Descent for 
MaxEnt (Jäger 2007; Moreton, Pater & Pertsova 2015).  

The just-mentioned convergence guarantees of OT and HG learning algorithms 
come with an important caveat: they apply only when the structure of the learning data is 
supplied in whole – when all the constraint violations of each learning datum are known. 
To continue with the stress example, finally stressed batán might be analyzed as having a 
trochaic (left-headed) foot on the final syllable, or an iambic (right-headed) foot that 
parses both syllables. As shown in (8), each representation incurs distinct constraint 
violations, since in one case the initial syllable is unparsed, violating Parse-Syllable, 
while the other falls afoul of Trochee, a constraint demanding left-headed feet. If we 
supply the learner with only the overt form, it must choose between the two full parses 
(or assign probability to them).  
 
(8)  An example of a hidden structure problem 

Overt form Full structure Parse-Syllable Trochee 

batán 
ba(tán) –1  
(batán)  –1 

 
While it might not be a problem for an analyst to supply full structures when studying 
typology or in modeling some cases of variation, there are many cases of linguistic 
analysis in which one might not be committed to a particular full structure for each piece 
of data, and would like a learner to find an appropriate grammar. In addition, dropping 
the idealization of full access to structure is part of moving to a more realistic model of 
human language acquisition.  

Learning with hidden structure (≈ learning with structural ambiguity) is generally 
accomplished in OT and HG by using the current state of the grammar to pick amongst 
the full structures for a piece of learning data (Tesar & Smolensky 2000), or to assign a 
probability distribution to them (Jarosz 2013; Jarosz 2015; Boersma & Pater 2016; 
Boersma & van Leussen 2017). A MaxEnt version of this general approach (e.g. Pater et 
al. 2012; Johnson et al. 2015; Pater & Staubs 2013) creates a single vector (row) of 
constraint scores for a partially structured learning datum by summing over the 
probability weighted vectors of all of the corresponding full structures (see Staubs & 
Pater 2016; Nazarov & Pater 2017 for extensions to serial variants of MaxEnt). None of 
these methods is guaranteed to converge on a global optimum, and their development and 
comparison is an area of ongoing research (as Boersma 2003 points out, non-convergence 
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can be an advantage, insofar as it corresponds to human learning difficulties or 
typological gaps).  

The learning methods for MaxEnt models and neural networks are highly 
overlapping, as was already noted in the discussion of gradual learning algorithms. Both 
can be learned with gradient-based optimization methods, including Gradient Descent 
(recall that the gradient indicates the direction of weight change). When the gradient for a 
neural net with one or more hidden layers is constructed using backpropagation, or when 
a gradient for a MaxEnt model is constructed with hidden structure (see Pater & Staubs 
2013 for a derivation of the gradient), there is no guarantee that these methods will find 
the best set of weights for the model, in terms of optimizing the fit of the model’s 
predictions to the data. That is, the learner may not find the global optimum, and may 
instead be trapped in a local minimum of error. Because of the current prominence of 
deep learning in AI, there is substantial research effort being expended to improve the 
performance of learners for multi-layer perceptrons, and many of the proposals can be 
adapted directly to MaxEnt (for example, the one in Neelakantan et al. 2015). 

Learners for parametric models are also subject to local optima because of 
structural ambiguity (Gibson & Wexler 1994). A typical response to this problem is to 
search for triggers (or cues) in the learning data that unambiguously correspond to the 
non-default value of each parameter, and then build those into the learner; one might also 
need to stipulate an ordering on the setting of the parameters (e.g. Dresher 1999). It is 
generally an advantage of violable constraints that such additional machinery is 
unnecessary (Tesar & Smolensky 2000), but recent work by Gould (2015) and Nazarov 
and Jarosz (2017) indicates that probabilistic parametric learners may also succeed 
without triggers.15  

One particularly interesting application of MaxEnt to the learning of phonology 
falls somewhat outside of standard OT/HG frameworks, in two respects. Hayes and 
Wilson (2008) develop a model of phonotactics that defines a probability distribution 
over the space of possible words. Unlike standard OT/HG as presented above, there is no 
mapping from an Input to an Output (or to put it differently, the Input is an 
undifferentiated “word”, rather than a word of a particular phonological shape). Also 
unlike standard OT/HG, the constraint set is not taken as a given (see Hayes & Wilson 
2008: 425; Moreton & Pater 2011 for discussion of the consequences for study of 
typology). Hayes and Wilson propose a method for constraint induction that chooses 
amongst candidate constraints according to a set of heuristics (see Wilson & Gallagher 
2016 for an alternative gain-based approach and comparison with other theories; see 
Berent et al. 2012 on evidence for the incorporation of variables; and further Berent 
2013). The hidden layer of a neural net allows for an alternative to constraint induction – 
which was hinted at in section 2.1, where we saw a hidden layer node sensitive to feature 
conjunction – and current research is exploring this alternative (Alderete, Tupper & 
Frisch 2013; Doucette 2017).  
 

                                                 
15 Nazarov and Jarosz (2017) find that Yang’s (2002) earlier trigger-free probabilistic learner succeeds at 
learning only 1 of 23 languages generated from a set of metrical parameters; their own learner succeeds on 
22 of them. It is also worth noting that Tesar (2004) presents a learner that can provably cope with 
structural ambiguity; it works only with deterministic OT (or HG), and cannot be used to model human 
learning paths.  
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4.2 Can recurrent neural networks learn syntax? 
Recurrent neural networks (RNNs; Elman 1990; Elman 1991) do perhaps surprisingly 
well in capturing some aspects, including long-distance dependencies, of natural 
language syntax, and have recently undergone a resurgence of popularity in AI 
applications of neural networks to language (see Goldberg 2016; Goldberg 2017 for 
tutorial overviews). It is unclear, however, whether they can fully learn syntactic 
regularities without the incorporation of hierarchical representations of the type used in 
generative linguistics, or alternative linguistic structure like dependency marking. In this 
section, I briefly introduce RNNs as used in Elman’s studies (often called Simple 
Recurrent Nets), provide an overview of some of the research on the learning of syntax 
using them and other types of RNN. This leads into a quick discussion of current neural 
network models, and their application to other linguistic domains, including the English 
past tense. 
 When applied to a sequence of elements, such as letters, phones, or words, RNNs 
process one at a time, starting at one edge of the string – typically the left (some modern 
applications scan in both directions). The network is used to predict the next element in 
the sequence, and the weights are updated based on that prediction (updates can also be 
made on more global predictions). As illustrated in Figure 4, when moving on to to the 
next element in a sequence, the current hidden layer is copied as a context layer to 
provide an extra set of inputs to the next computation of the hidden layer activations, and 
the Output. The representation encoded in this copied hidden layer provides a basis for 
the prediction of upcoming elements based on those encountered earlier – i.e. it is a type 
of sequential memory.  
 

 
Figure 4. The structure of a Simple Recurrent Neural Network (adapted from Lewis & 
Elman 2001) 
 
Elman (1990; 1991) uses toy language examples to show that these networks can capture 
some basic aspects of syntax. Elman (1990) focuses on the formation of categories (Noun 
and Verb), and on word order restrictions in single clauses. Elman (1991) goes on to 
examine RNNs’ abilities to capture subject-verb agreement dependencies across 
embedded clauses, finding that their predictions are in fact influenced by information 
retained from across the embedded clause. 
 Elman (1991:221) recognizes the preliminary nature of his results, and given the 
limitations of the datasets he was working with, one could reasonably either be 
enthusiastic about the potential for further development of this approach, or skeptical. 
And presumably, that degree of skepticism could well be influenced by the strength of 
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ones’ prior belief in the necessity of a rich UG. From a generative perspective, an RNN is 
a very impoverished theory of UG. Not only does it lack parameters or constraints 
encoding the substance of possible grammatical systems, but the basic structures, such as 
syntactic categories and trees, are themselves absent, at least prior to learning. A hidden 
layer can form abstract representations of the data, and there are some hints in Elman’s 
results that those representations may do the work of explicit categories and constituent 
structure, but much research remains to be done, even today, to determine the extent to 
which they can.  
 Fitz and Chang (2017) provide a particularly useful overview of one line of 
research in this domain, and some intriguing new results. A much-discussed case of the 
poverty of the stimulus is auxiliary inversion in English yes-no question formation 
(Chomsky 1975; Chomsky 1980). The fronted auxiliary in Is the bottle that the woman is 
holding broken? is displaced from the underlined verb phrase of the main clause in The 
bottle that the woman is holding is broken, rather than from the embedded clause. This is 
a structure dependent rule, as opposed to a putative rule of “front the first auxiliary”, 
which would work for mono-clausal cases, but would yield the ungrammatical *Is the 
bottle that the woman holding is broken? for this and other similar cases of embedding. 
Fitz and Chang show that an RNN that is simply trained to predict upcoming words 
generalizes the incorrect rule (contra Lewis and Elman 2001). They further show that if 
the learner is given the task of generating sentences given a meaning representation, it 
does yield the correct generalization from monoclausal training instances of auxiliary 
inversion to the structure dependent rule. Since they incorporate explicit propositional 
structure into their meaning representations, Fitz and Chang’s work can be seen as an 
instance of the “fusion” that is the focus of this section – they in fact see their proposal as 
bridging the usually antagonistic emergentist/constructivist and innatist approaches to 
aux-inversion (p. 243). 
 Whether or not Fitz and Chang’s approach will generalize to other phenomena is 
very much an open question. One set of challenges for RNN approaches to syntax 
appears in Frank, Mathis and Badecker’s (2013) study of anaphora resolution. The pair of 
sentences from their study (p. 197) in (9) illustrates part of the phenomenon. 
 
(9) a. Alice who Mary loves admires herself 
 b. Alice who loves Mary admires herself 
 
The question is who herself refers to. As Frank et al. point out, native speaker judgments, 
as well as online processing measures (Xiang, Dillon & Phillips 2009), show that it can 
only be Alice – not Mary, or anyone else. This is captured in grammatical accounts in 
terms of the positions of Alice and Mary relative to herself in a hierarchical structure. 
Frank et al. explore an RNN similar to that illustrated in Figure 4, except that the context 
layer is sandwiched between two hidden layers. They train it to predict upcoming words, 
and then use the trained network to assign interpretations by examining which nodes 
herself activates, where Alice, Mary and Sue each have a node. They find that the 
network correctly assigns almost all of the probability to Alice in (9a). In (9b.), however, 
it assigns probability of 0.16 to Mary. They diagnose the success on (9a.) as indicating 
the ability of RNNs to capture structural relationships (though see further below), and the 
partial failure on (9b.) as indicating their ability to capture incorrect linear relationships. 
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The substring Mary admires herself can be interpreted in other contexts with herself 
referring to Mary, but not in (9b.), because of its clausal structure. Importantly, they 
argue that the sequence-based errors of networks in this task are different from those 
observed in human sentence processing (p. 200-201), which show sensitivity to structure 
(though see relatedly Willer Gold et al. 2017).  
 Neural networks – especially RNNs – without prespecified linguistic structure 
have recently been broadly applied in AI language tasks with considerable success. In 
machine translation, RNNs are used to map from a sequence of words in one language to 
a sequence in another, without any intermediate explicitly encoded linguistic structure 
(Sutskever, Vinyals & Le 2014; Bahdanau, Cho & Bengio 2016; Wu et al. 2016).16 These 
models achieve state of the art performance, doing as well – and usually better – than 
earlier models that map to intermediate levels with linguistic structure like phrases, and 
are the basis of useful applications like Google Translate. This “end-to-end” approach has 
also been applied in speech recognition, mapping from acoustic signal to text without an 
explicit intermediate phone layer (e.g. Amodei et al. 2016). 
 The success of modern RNNs in applied language tasks is due to advances in their 
architecture, as well as in training methods and computational hardware which jointly 
allow for training of large networks – e.g. very “deep” ones with many layers – on large 
datasets. Do these advances lead to models that can successfully learn to represent natural 
language syntax without explicitly specified linguistic structure? Linzen et al. (2016) 
explore the ability of modern RNNs to learn subject-verb agreement, and find results that 
are somewhat parallel to those of Frank et al. (2013): the models do have a degree of 
success on even long-distance dependencies, indicating that they have learned something 
akin to a structural analysis, but they also have a tendency to extract incorrect linear 
regularities (see also the follow-up in Bernardy & Lappin 2017). Adger (2017) takes the 
failures of this model as vindication of Chomsky’s (1957) arguments against statistical 
models of language, but one could equally take its successes as vindication of a statistical 
approach. Linzen et al.’s own interpretation of their full set of results is that they are 
encouraging, but that some sort of explicit linguistic structure may need to be added to 
allow appropriate generalization based on learning data closer to those experienced by 
humans (that is, under unsupervised learning).  
 The source of the inappropriate linear generalizations in cases like those discussed 
in Frank et al. (2013) and Linzen et al. (2016) is not entirely clear. In the limit, RNNs are 
universal function approximators (see Elman 1991: 219 for discussion), so it would be 
incorrect to say that they cannot represent the correct mappings. Whether a given network 
can represent a particular set of mappings is another question, as is whether it will wind 
up in that state with a given learning algorithm operating with a given set of training data. 
Therefore, further research on the learning of syntax by RNNs – and other types of neural 
net – will involve exploration of (1) the representational capacities of particular networks, 
                                                 
16 The RNNs in these sequence-to-sequence models are typically embedded in a Long Short Term Memory 
architecture (LSTM; Hochreiter & Schmidhuber 1997). Recent work suggests that the LSTM architecture 
itself, independent of the RNN, may provide much of its representational power (Levy et al. 2018). Other 
work has suggested convolutional networks as alternatives to RNN/LSTMs (e.g. Bai, Zico Kolter & Koltun 
2018). Edelman (2017: 105) offers a skeptical assessment of the applicability of Deep Learning (DL) to the 
modeling of linguistic cognition – “While the practical appeal of DL is clear, its contribution to the 
understanding of the human language faculty seems limited.” – and a survey of alternative neural models 
that he deems more promising. 
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(2) the performance of particular algorithms, (3) and the relationship between properties 
of the training data and the resulting generalization. In proposing Recurrent Neural 
Network Grammars, Dyer et al. (2016) hypothesize that RNNs do in fact need to be 
supplemented with hierarchical structure.  

The extent to which explicit linguistic structure is needed in AI models of 
language is very much a subject of general current debate (see e.g. the presentations and 
discussions collected in Pater 2018). Alongside the just-mentioned proposal by Dyer et 
al. (2016), there are a number of recent proposals that incorporate compositional and 
hierarchical linguistic structures into neural networks with the aim of improving their 
performance on AI tasks (e.g. Andreas & Ghahramani 2013; Socher et al. 2013; Bowman 
et al. 2015; Yogatama et al. 2016; though see also Bowman, Manning & Potts 2015). 
Alongside these proposals are observations about the fragility of models that eschew 
linguistic structure when they are tested on linguistically challenging data (e.g. Ettinger et 
al. 2017; Jia & Liang 2017). In her overview of the presentations at the most recent 
meeting of the Association for Computational Linguistics, See (2017) in fact dubbed one 
of the main trends as “Linguistic Structure is Back”.  
 The sequence-to-sequence models used in machine translation allow for 
straightforward applications to the kinds of within-language mappings between 
representations studied by linguists. These applications have yielded some encouraging 
results, even for models that do not incorporate explicit linguistic representations. For 
example, Kirov (2017) and Kirov and Cotterell (2018) train a standard RNN-based 
sequence-to-sequence model on the same English present-to-past tense mappings as 
Albright and Hayes’ (2003) stochastic rule-based model. They find that its predictions 
provide a far better match to native speaker formations of novel past tense forms (“wug” 
test data), especially amongst irregulars, than Albright and Hayes’ own model. This 
provides some reason to be skeptical of Marcus’ claim, presented in sec. 3.1 above, that a 
successful model of the past tense needs symbolic representations. 17  Sequence-to-
sequence models can also be used for syntactic transformations, as shown by Frank and 
Mathis (2007) using an earlier generation of RNN (see also relatedly Chalmers 1990), 
and ongoing research is addressing the extent to which these models cope with the 
auxiliary inversion poverty of the stimulus problem discussed above (McCoy, Frank & 
Linzen 2018).   
  Besides testing the performance of trained neural networks, one can inspect the 
values of connection weights and the activation patterns produced for particular inputs to 
gain insight into the representations they have constructed. Elman (1990; 1991) pioneered 
this approach with his early RNN studies, finding evidence for the representation of 
syntactic categories in the hidden layer. In their study of anaphora resolution, Frank et al. 
(2013) conclude that the representations are not sufficiently abstract, being too tied to 
particular words rather than to categories. This approach has also recently been applied in 
                                                 
17 Marcus’ (2001: chap. 3) main argument for symbolic models comes from their ability to represent 
generalized identity functions, and the inability of RNNs to learn these functions (see also Tupper & 
Shahriari 2016). These identity functions can play a role in representing natural language reduplication. 
Although initial work found that standard sequence-to-sequence models did not seem to learn general 
reduplicative mappings (Prickett 2017), further exploration of these models, in particular using the Dropout 
technique to aid generalization (Srivastava et al. 2014) has yielded positive results (Prickett, Traylor & 
Pater 2018;  see also Alhama & Zuidema 2018 for related work).  
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speech, finding evidence for phone categories being represented in a hidden layer of a 
network trained to map from acoustic signals to images (Alishahi, Barking & Chrupała 
2017). A particularly relevant recent result in this vein with respect to the question of 
how syntax may be represented in RNNs is presented in Palangi et al. (2017), who 
introduce Tensor Product Recurrent Networks, and show that their internal 
representations can be interpreted syntactically. Like the Hayes and Wilson model 
discussed at the end of the last section, this model occupies an interesting middle ground 
between the poles of innatism and emergentism, since it is given the structural building 
blocks of symbols and their roles, but must learn their configurations.  
 
5. Conclusions 
When viewed from a sufficient distance, neural network and generative linguistic 
approaches to cognition overlap considerably: they both aim to provide formally explicit 
accounts of the mental structures underlying cognitive processes, and they both aim to 
explain how those structures are learned. When viewed more closely, especially with 
respect to the research practices within each tradition, they may seem to diverge sharply, 
with the bulk of connectionist practice involving computational learning simulation allied 
with AI tasks (see e.g. 4.2 above), or with psychological experimentation (see e.g. papers 
in Christiansen & Chater 2001), and with the bulk of generative practice involving 
grammatical analysis of  linguistic systems. At a middle depth of field, one can find a 
growing research territory in which the bodies of knowledge and the models developed in 
each of these traditions are jointly applicable. In this paper, I have focused on the 
question of how systems that adequately represent linguistic knowledge can be learned. 
Some of the most promising avenues for answering that question build both on generative 
insights into the nature of linguistic knowledge, and on connectionist insights into the 
nature of learning. 
 The utility of representations like those assumed in generative linguistics for 
neural network modeling of language was discussed in sections 3.2 and 4.2. Why might 
generative linguistics need connectionism for the formalization of learning? At first sight, 
it is not obvious, insofar as learning in generative linguistics is reduced to the setting of 
parameters, or to the ranking or weighting of constraints. In section 4.1, I surveyed some 
ways in which the importation of learning theory from connectionism and related areas of 
statistical learning has been profitable, and promises to yield further dividends, especially 
in the context of weighted constraint theories of grammar. The biggest payoff, however, 
is almost certainly to come in confronting the problem of learning the representations, 
constraints or rules themselves, as in the work mentioned at the end of both sections 4.1 
and 4.2. “Feature induction” is a very difficult problem in AI, and a lot of the success of 
neural approaches comes from their ability to learn representations of the data in hidden 
layers (a leading conference for neural net research is the International Conference on 
Learning Representations).   

Learning considerations continue to play a role in current theoretical discussions 
in the Minimalist framework, just as they did in principles and parameters theory (sec. 
3.1 above). For example, in arguing for a parameter-free version of Minimalism, Boeckx 
(2014) challenges claims that having parameters in UG aids learning, while Chomsky et 
al. (2017: 19) criticize the “Cartographic Program pursued by Cinque, Rizzi and many 
others” by saying “there is no conceivable evidence that a child could rely on to learn 
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these templates from experience.” As with Chomsky’s programmatic statements about 
principles and parameters theory discussed in section 3.1, it is hard to know how to assess 
these sorts of claims in the absence of a learning theory. Hunter and Dyer (2013) show 
that Minimalist grammars can be formalized as log-linear models (i.e. MaxEnt 
grammars), thus opening the door to the importation of the learning theories discussed in 
4.1 (see Johnson 2013b for a more general introduction to statistical learning of 
grammars). It has been pointed out that statistical learning theory, especially Bayesian 
modeling, can permit a more rigorous assessment of claims about UG (see the overview 
in Pearl & Goldwater 2016). 18  When neural network modeling is integrated with 
grammatical formalisms in the ways discussed in section 4, we may be able to go further 
in assessing the extent to which grammatical representations can be learned from 
experience, and what aspects of the grammar must be hard-wired. In developing 
grammatical theories that can be learned from data, we may also be able to develop 
grammatical competitors to the “vanilla” recurrent neural networks that Lau et al. (2017) 
present as state-of-the-art in modeling sentence acceptability judgments. 
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